Textual Entailment - Fitchburg State College

نویسندگان

  • Orlando Montalvo-Huhn
  • Stephen Taylor
چکیده

Our submission guesses at entailment based on word similarity between the hypotheses and the text. We attempt three kinds of comparisions: original words (with normalized dates and numbers) synonyms, and antonyms. Each of the three comparisions contributes a different weight to the entailment decision. Our results are insignificantly better than chance for the two-way comparison. However, for the three-way comparison they are much better.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UCD IIRG Approach to the Textual Entailment Challenge

This report outlines the approach taken by members of the IIRG at University College Dublin in the PASCAL Textual Entailment Challenge 2005. Our technique measures the semantic equivalence of each text/hypothesis pair by examining both linguistic and statistical features in these sentences using a decision tree classifier.

متن کامل

Techniques for Recognizing Textual Entailment and Semantic Equivalence

After defining what is understood by textual entailment and semantic equivalence, the present state and the desirable future of the systems aimed at recognizing them is shown. A compilation of the currently implemented techniques in the main Recognizing Textual Entailment and Semantic Equivalence systems is given.

متن کامل

Sports and Exercise Medicine

1Health and Human Performance Department, Plymouth State University, Plymouth, NH, USA 2Exercise and Sports Science Department, Fitchburg State University, Fitchburg, MA, USA 3Physical Education and Health Education Department, Springfield College, Springfield, MA, USA *Corresponding author Ryanne D. Carmichael, PhD Assistant Professor Exercise and Sport Physiology Coordinator Health and Human ...

متن کامل

Effectively Using Syntax for Recognizing False Entailment

Recognizing textual entailment is a challenging problem and a fundamental component of many applications in natural language processing. We present a novel framework for recognizing textual entailment that focuses on the use of syntactic heuristics to recognize false entailment. We give a thorough analysis of our system, which demonstrates state-of-the-art performance on a widely-used test set.

متن کامل

Similarity Between Pairs Of Co-Indexed Trees For Textual Entailment Recognition

In this paper we present a novel similarity between pairs of co-indexed trees to automatically learn textual entailment classifiers. We defined a kernel function based on this similarity along with a more classical intra-pair similarity. Experiments show an improvement of 4.4 absolute percent points over state-of-the-art methods.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008